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Introduction to compressed sensing

Compressed sensing (CS) is an emerging 
field of mathematics and engineering 

that challenges the conventional paradigms 
of digital data acquisition. Since the semi-
nal publication of Candès et al. (2006), the 
field has developed a substantial academic 
literature and has provided the founda-
tion for major innovations in medical imag-
ing, astronomy, and digital photography. 
Although CS is very mathematical, it can be 
conceptually intuitive. This tutorial provides 
a brief introduction to CS concepts through 
simple examples and interactive figures in an 
accompanying Jupyter notebook at github.
com/seg/tutorials.

Over view
Many signals have an inherently low-

dimensional structure, meaning all the 
information can be compressed into rela-
tively few coefficients. As a simple example, consider the signal 
x(t) = A sin(ft + ϕ), which is constructed with only three pieces of 
information: the amplitude A, the frequency f, and the phase ϕ. 
Measuring this signal by using conventional acquisition requires 
sampling the entire duration of the signal at a rate of at least 2f, 
which results in 600 samples for a 10-s, 30-Hz signal. Why did 
we collect 600 samples of data when we require only three pieces 
of information? This is the fundamental question that com-
pressed sensing is asking. In a field with large data-acquisition 
costs, we should pay close attention to the answers.

To gain some basic intuition into CS, this tutorial dem-
onstrates the compressed acquisition of the simple 1D signal, 
where f
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Sparsity
The first requirement for compressed sensing is the existence 

of a sparse signal representation. We need to know a priori that the 
signal we are acquiring has relatively few nonzero coefficients in 
some transform domain. That might seem like a heavy requirement, 
but fortunately, the field of data compression has found sparsifying 
transforms for many types of general signal classes. For example, 
the Fourier transform compresses harmonic signals, the wavelet 
transform compresses images, and curvelets sparsify seismic data. 
In our simple example, let us assume that we know the signal has 
harmonic content and is therefore sparse in the Fourier domain.

S ampling
Let us make the jump from data compression to compressed 

sensing, in which we will try to exploit the compressibility of 
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our signal directly during acquisition. Let us look first at the 
limitations of uniform sampling and then move on to other 
sampling methods.

For decades, uniform sampling has been the engineered 
data-acquisition strategy, in which Shannon-Nyquist theory 
says we can represent our signal uniquely by sampling at a rate 
of at least twice the highest frequency. Considering that our test 
signal can be reduced to only two samples of information, we are 
grossly oversampling, but we run into trouble with fewer sam-
ples. Figure 1 show the result of trying to reconstruct the test 
signal from fivefold undersampling below the Nyquist rate. As 
a result of the subsampling, we have introduced new frequency 
components called aliases. When we try to reconstruct our test 
signal, we are filling the gaps between samples incorrectly.

Fundamentally, aliasing occurs when multiple signals have 
the same value at every sample, which creates ambiguity to what 
the true signal is. When we violate the Nyquist rate, we no lon-
ger can fill gaps between data samples uniquely. Figure 2a dem-
onstrates two aliased signals; the signals are identical at every 
sample point.

The problem is that both the signal and sampling pattern 
are periodic, which causes them to coherently interfere with 
each other. If our sampling pattern were aperiodic, it would be 
unlikely for different signals to have exactly the same value at 
every sample. The easiest way to break coherency is to use a ran-
dom sampling pattern. Figure 2b shows that the aliased signals 
become distinguishable when we sample at random times.

We have shown that we can break aliasing patterns by random 
sampling, so let us return to the problem of subsampling our test 
signal. Note the differences in the Fourier spectrum (Figure 3a) 
compared with the aliased result we saw earlier. Since we broke the 
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Figure 1. (a) Simple test-signal time series. (b) Amplitude half-spectra of the test signal. (c) 
Sampling and reconstruction of the test signal using fivefold regular subsampling. (d) Aliased 
spectrum of the fivefold regularly subsampled test signal.
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coherency of our sampling pattern, aliased 
signals have become random noise. We did 
not recover our signal (Figure 3b) because 
of the added noise. However, now that we 
have removed the ambiguity of aliasing, we 
can exactly reconstruct our signal through 
denoising techniques such as thresholding.

Recover y
The recovery stage of compressed sens-

ing is the most challenging because it re-
quires significant a priori knowledge of the 
signal. For our test signal, we can recon-
struct the original signal fully by taking the 
two largest Fourier coefficients and renor-
malizing the signal energy. This requires 
prior knowledge of the number of nonzero 
coefficients in our signal or knowledge of 
an acceptable threshold value. In practice, 
recovery is often posed as an optimization 
problem in which we search for the smallest 
number of coefficients that can fit our sam-
pled data within a given tolerance.

Seismic applications
This tutorial demonstrated CS concepts to a compressed 

acquisition of a simple signal, but how can we scale to seismic 
acquisition? We showed that for compressed sensing to be suc-
cessful, we need

• a transform domain that can represent our data sparsely
• a sampling pattern that is incoherent in the transform 

domain
• a reconstruction method that promotes a priori knowledge 

about the signal sparsity

All of these are active fields of research in the seismic com-
munity. Curvelets have shown promise as a potential sparse 
representation of seismic data, and “low-rank” methods which 
exploit redundant structure in the midpoint-offset domain also 
are gaining traction with researchers.

Applying random sampling patterns is simple in theory, but 
in practice, it requires significant reengineering of the way we 
collect data. Seismic surveys are massive and use large vessels, 
streamer arrays, and precise logistics that all have been designed 
to collect data at regular intervals. Real-world random acquisi-
tion, although challenging, is a tractable problem, given ade-
quate investment.

Confidence in the reconstruction is perhaps the largest hur-
dle in the uptake of CS methodology because it is difficult to 
impose an engineering specification on prior knowledge of sig-
nal sparsity or the rank of your data matrix. The a priori assump-
tions required for signal recovery are dependent on the local 
geology and carry a high level of uncertainty.

Simulations as well as synthetic resampling of seismic data 
have shown high signal-to-noise reconstructions with as much as 
tenfold subsampling. Although it is exciting, these are not blind 
experiments, and in many cases, they use knowledge of the true 
signal when defining reconstruction conditions. Compressed 
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Figure 2. (a) Demonstration of aliasing caused by periodic sampling. (b) Breaking aliased 
signals using a random sample pattern.

Figure 3. (a) Sampling and reconstruction using fivefold random undersampling. (b) Amplitude 
spectrum of fivefold random subsampling of the test signal. The threshold is shown for perfect 
signal reconstruction.

sensing has the potential to be a disruptive innovation in seismic 
acquisition, and it poses an interesting high-risk, high-reward 
engineering problem. 

Corresponding author: ben.bougher@gmail.com

Reference
Candès, E. J., J. K. Romberg, and T. Tao, 2006, Stable signal recov-

ery from incomplete and inaccurate measurements: Communi-
cations on Pure and Applied Mathematics, 59, no. 8, 1207–1223, 
http://dx.doi.org/10.1002/cpa.20124.5 

Suggestions for further reading
Bryan, K., and T. Leise, 2013, Making do with less: An introduction to 

compressed sensing: SIAM Review, 55, no. 3, 547–566, http://dx.doi.
org/10.1137/110837681.

Hennenfent, G., and F. J. Herrmann, 2008, Simply denoise: Wave-
field reconstruction via jittered undersampling: Geophysics, 73, 
no. 3, V19–V28, http://dx.doi.org/10.1190/1.2841038.

Mansour, H., H. Wason, T. T. Y. Lin, and F. J. Herrmann, 2012, 
Randomized marine acquisition with compressive sampling 
matrices: Geophysical Prospecting, 60, no. 4, 648–662, http://
dx.doi.org/10.1111/j.1365-2478.2012.01075.x.


